Journal of Organometallic Chemistry, 145 (1978) 121-138
(c) Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

The Crystal Structure of o-(Diphenylphosphino)phenyl-cis-1,2dicarbomethoxyethenyltriphenylphosphineplatinum.

Nicholas C. Rice and Joel D. Oliver*
Department of Chemistry and the Killgore Research Center, Kest Texas State University, Canyon, Texas 79016 (U.S.A.)
(Received May $31 s t, 1977$)

Sumpary The structure of o-(diphenylphosphino)phenyl-cis-1,2-dicarbomethoxyethenyltriphenylphosphineplatinum, ($P_{3} P$)$\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] P \mathrm{P}-\mathrm{cis}-\left(\mathrm{CO}_{2} \mathrm{MeC=CHCO} 2 \mathrm{Me}\right)$, has been determined by single crystal $X-r a y$ diffraction methods. The crystals are triclinic, space group $P \bar{I}$, two molecules per unit cell with dimensions $\underline{a}=12.560(1), \underline{b}=13.600(1), c=11.452(1) \stackrel{\circ}{\mathrm{A}}, \mathrm{c}=$ $110.01(1), \beta=97.58(1)$, and $\gamma=91.03(1)^{\circ}$. A calculated density of 1.57 g cm for two formula units per cell is consistent with the measured value of $1.56(2) \mathrm{g} \mathrm{cm}^{-3}$. The coordination about the platinum atom is square-planar with the two phosphine ligands oriented cis with respect to one anuther. Tife u-bouded vinyl group aiso possesses cis stereochemistry. The geometry of the four-atom metallocyclic ring in this compound is compared to those of metallocyclobutene and platinacyclobutane complexes. The average $P t-P$ bond length is $2.330(2) \stackrel{A}{A}$ and the observed $P t-C$ bond lengths are 2.059 (8) and 2.026(8) A. These bond lengths are discussed in terms of the trans-influence. Full-matrix least-squares refinement has yielded $R=0.047$ (0.048 for weighted R) based on the 5208 reflections whose intensities are significantly above background (Inet ≥ 10 counts s^{-1}).

During an examination of the thermal stability of dicarbomethoxyacetylenebis(triphenylphosphine)platinum, Clark and Hine [I] Isolated a product formulated as

I
resulting from fnternal metalation. The detailed stereochemical assignment for I was based upon the observed IR and NMR spectra.

Although metalation reactions of transition metal complexes have been known for some time [2-4], the mechanism of the reaction gielding I is unusual. These reactions normally proceed via oxidarive-addition of an aryi $c-H$ bond to the metai atom followed by elimination of the resultant hydride in the form of H_{2}, as part of an alkane, or as part of a more complex species. In the reaction forming I, insertion of the alkyne iigand into the $P t-R$ bond subsequent to the oxidative-addition step is required.

Molecular structure studies of orthometalation products have predominantiy involved complexes containing five- or sixatom chelate rings. Perego and coworkers [5,6] have reported structures of two fridium complexes containing four-atom riugs analogous to that proposed for I. In order to confirm the fientity of I and to allow an unambiguous assignment of
the stereochemistry of the molecule, a single crystal X-ray diffraction investigation was initiated.

Experimental

A sample of the title compound was kindly supplied by Professor H. C. Clark and was recrystallized from a 2:1 mixture of ethanol and methylene chloride before use. The colorless data crystal was mounted with [121] parallel to the phi axis of the goniometer. X-ray studies were performed using a Diano-XRD 700 diffractometer equipped with a single crystal orienter using $C u K_{\text {c }}$ radiation at ambient room temperature $\left(\sim 21^{\circ} \mathrm{C}\right)$.

Intensity weighted plots of the reciprocal lattice revealed only triclinic diffraction symmetry (i). No higher symmetry was revealed by a reduced cell calculation. Lattice parameters listed in Table 1 were obtalned by least-squares refinement of 66 independent reflections with K_{1} and K_{2} well resolyed.

The mosaic character of the crystal was determined by inspection of ω scans $\left(5^{\circ}\right.$ take off angle and 0.05° receiving slit) for several reflections. The scans revealed peaks that were.single, narrow ($<.5^{\circ}$ wide), and symmetrical, indicating suitable quality for the stationary-crystal, stationary-counter technique of data collection (5° take off angle and 1° recelving slit) using balanced Ross filters. During data collection the crystal was frequently aligned and the intensities of 6 standard reflections were monitored. Only random variations in intensities were noted thus no correction for crystal decomposition was required.

The intensfties were corrected for absorption as a function of crystal shape [7] with correction factors ranging from 2.86 to 4.97. Additional corrections for Lorentz and polarization

Table 1 Experimental Summary

Crystal Data for $\mathrm{C}_{42}{ }^{\mathrm{H}} 36{ }^{\circ}{ }_{4} \mathrm{P}_{2} \mathrm{Pt}$

Formala Kefght 861.79
$\underline{a}=12.560(1) A$
$\underline{b}=13.600(1) A$
$c=11.452(1) ~ A$
$\alpha=110.01(1)^{\circ}$
$B=97.58(1)^{\circ}$
$\gamma=91.03(I)^{\circ}$
$d_{\text {calcd }}=1.578 \mathrm{~cm}^{-3}$
$\mathrm{d}_{\text {measd }}=1.56(2) \mathrm{g} \mathrm{cm}^{-3}$
(flotation, aqueous AgNO ${ }_{3}$)

TrさcIInic
Systematic absences: none
Space group P $\overline{1}$ (No. 2)
$Z=2$
$F(000)=856 e$
$\lambda_{\mathrm{Cu}}: \mathrm{Ka}_{1}, 1.54051 \mathrm{~A}$;
$\mathrm{K} \alpha_{2}, 1.54433 \AA$

Data Collection

Crystal Dimensions: $00.09 \times 0.10 \times 0.14 \mathrm{~mm}$ $\mu($ GuK $\bar{\alpha})=85.33 \mathrm{~cm}^{-1}$

5390 symimétry independent reflections for $6^{\circ}<2 \theta \leq 120^{\circ}$. (5208 refiections trith $I_{\text {net }} \geq 10$ counts s^{-1})
effects, and for $\alpha_{1} \alpha_{2}$ splitting [8] were applied. Standard deviations in the observed structure factor amplitudes, $\sigma\left(\boldsymbol{F}_{\mathrm{o}} \boldsymbol{\|}\right)$, were calculated on the basis of counting statistics [9].

The positions of the platinum and the two phospiorus atoms were determined by interpretation of a three-dimensional patterson map. A subsequent electron density calculation revealed the posfitions of all remafning nonhydrogen atoms of the structure. The five nonmetalated phenyl rings were treated as rigid groups
with idealized geometry (120° bond angles, C-C distances 1.397 A, $C-H$ distances 0.95 A) in the least-squares calculations, with each carbon atom assigned a variable isotropic temperature factor: The isotropic temperature factor of each hydrogen atom was constrained tó $6.0 \mathrm{~A}^{2}$. Least-squares refinement employing isotropic temperature factors for the non-group atoms converged at

$$
\begin{aligned}
& R_{1}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|=.057 \quad \text { and } \\
& R_{2}=\left[\Sigma\left(\omega| | F_{0}\left|-\left|F_{c}\right|\right|^{2}\right) / \Sigma \omega\left(\left|F_{0}\right|\right)^{2}\right]^{\frac{3}{2}}=.096,
\end{aligned}
$$

where $\dot{\omega}=\sigma^{-2}\left(\left|F_{0}\right|\right)$. The function minimized in the leastsquàres calculation was $\Sigma \omega\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. A difference electron density map calculated at this point contained peaks in reasonable positions for the remaining eleven hydrogen atoms of the structure. These hydrogen atoms were included in all subsequent least-squares calculations at their idealized positions with $B=6.0 \AA^{2}$. Additional least-squares refinement of this model varying the overall scale factor, an isotropic extinction parameter (6.1(5) x. $10^{-6} \mathrm{e}^{-2}$) [10], the positional and anisotropic thermal parameters of the nineteen nonhydrogen, nongroup atoms, six orientational and positional parameters for each of the rigid groups, and the isotropic thermal parameters of the nonhydrogen atoms of the phenyl rings served to complete refinement at $\mathrm{R}_{1}=0.047$ and $\mathrm{R}_{2}=$ 0.048 . * A final difference electron Gensity map contained a number of peaks in the order of 1.0 e \AA^{-3} in the vicinity

[^0]Tab1e ${ }_{\sim}^{2}$
$$
\text { AtOms of } \mathrm{C}_{42} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{P} \mathrm{t}^{\mathrm{a}}
$$

317 (53)

6
$\substack{0 \\ \mathbf{N} \\ \multirow{2}{c}{\hline}\\ \hline}$

75 (51)
173(44)
$\begin{array}{ll}423(53) & 247(62) \\ 435(50) & 146(48)\end{array}$
$903(79)$
$625(61)$
$875(75)$
$709(60)$
6.00^{c}
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
1406(8) $5123(8)$
4615 (7)
611
2526
3746
4560
5736
7019
6020
3393
5044
5806
$\stackrel{\circ}{*}$
$\underset{\sim}{3}$
1633 (7)
-776
-1042
-924
3439
2400
3242
N
On
H
1998
1362
1150
1543
5252(8)
4252 (7)
738
1928
1450
1621
-1106

- 643

6827
6844
6844
N
in
in
in
C(11)
(てT) 0

H(3B)
H(3C)
H (4)
H(6A)
H(6B)
H(6C)
H(9)
H(10)
$\underset{\underset{y}{-}}{\underset{y}{-}}$

N
$\underset{y}{-}$

$c_{\text {Thermal }}$ parameters for the hydrogen atoms are presented $x 1$.
Group Paramotera ${ }^{\text {a }}$
Table 3.

Table ${\underset{\sim}{~-~}}^{3}$ continued

Hydrogen atoms were assigned isotropic thermal parameters, $B=6.0 \AA^{2}$.
of the platinum and the phosphorus atoms- Smaller peaks (0.3 to $0.8 e^{-3}$) were located near the five rigid phenyi gronps or mear the methyl substituents.

Scattering factors for the platinum, phosphorus, carbon, and oxygen atoms were taken from Cromer and Waber [1I]. The anomalous dispersion corrections for the platinum and the phosphorus atoms were included [12]. Scattering factors for the hydrogen atoms were taken from Stewart, Davidson, and Simpson [13].

Discission

The final atomic parameters of I are given in Table 2. The parameters associated with the five phenyl rings treated as rigid groups are given in Table 3. Table 4 contains equations for selected least-squares planes. Figure 1 presents a stereoscopic view of the molecule and indicates the atom labeling schene used. Each hydrogen atom is mumbered according to the carbon atom to which it is bonded. The methyl hydrogen atoms attached to $C(i)$ are labeled $H(i A), H(i B)$, and $H(i C)$. Sond iengtis and bond angles are dispiayed in Figures 2 and 3 respectively. Figure 4 presents a stereoscopic view of the molecular packing.

The structure is monomeric and reveals a slightly distorted square-planar geometry about the platinum atom. plane A, defined by $P t, C(1)$, and $C(4)$, and the plane containing $P t$, $P(1)$, and $P(2), p l a n e$, B, intersect to form an angle of 80.51°, which is comparable to the angle between the P tP ${ }_{2}$ and $P t C_{2}$ planes In trans-Pt (CooEt) ${ }_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 80.8^{\circ}$ [15]. The P(1)-PtP(2) angle in this, structure agrees favorably with the values observed in other cis-triphenylphosphine complexes. Plane C, the plane of the four-atom metalated rings and the plane of
Table 4. Selected Least-Squares Planes ${ }^{\text {a }}$

Plane	Atoms defining the plane	$A\left(x 10^{4}\right)$	$B\left(x 10^{4}\right)$	$C\left(x 10^{4}\right)$	$D\left(x 10^{4}\right)$	$d \mathrm{dev}^{\mathrm{b}}(\mathrm{A})$
A	$\mathrm{Pt}, \mathrm{C}(1), \mathrm{C}(4)$	5798	-4022	7086	-29033	-
B	$\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2)$	138	7852	6518	-35662	-
C	$\mathrm{Pt}, \mathrm{P}(2), \mathrm{C}(8), \mathrm{C}(7)$	144	7576	6526	-35689	0.008
D	$\mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(11), \mathrm{C}(12)$	334	7562	6535	-36704	0.003

$$
\begin{aligned}
& \text { The equations of the planes are of the form: } A p+B q+C \underline{r}+D=0, p, q \text { and } \underline{x} \text { are } \\
& \text { the Cartesian coordinates (} \AA \text {) relative to the crystallographic directions a, } c^{*} \times a \text {, } \\
& \text { and } c^{*} \text {. } \\
& { }^{b} \text { Average out of plane deviation. }
\end{aligned}
$$

PIgnxe 1 .
A stereoscopic view of the molecile iliustrating the atom-numbering scheme employed. Ellipsoids of 30% probability are shown.

Figure 2. Bond distances: The estimated standard:deviation given in parentheses refers to the last decimal place.

Figure 3. Bond angles. The estimated standard deviation given in parentheses refers to the last decimal place.

Figure 4. A stereoscopic view of the molecular packing with the unit cell outlined. The b axis is horizontal, the c axis is vertical, and the a axis points toward the reader.
the disubstituted phenyl ring, plane D, intersect to form an angle of 1.09°.

The geonetry of the monohapto triphenyl phosphine ligand is normal, The $P t-P(2)-C(8)$ angle within the orthometalated ring compares to an expected $C-P-P t$ angle of 116° [16] in a normal, monohapto triphenylphosphine ligand and is indicative of the extensive ring strain within the metallocycilc ring. The "egg-beater" arrangement of the triphenylphosphine ligands characreristic of other cis-bistriphenylphosphine substituted complexes is not observed in I. Rather, the P-C bonds approximately eclipse one another when vieved along the P(1)-P (2) direction. This geometry is also reflected in the distances of the carbon atoms (bonded to the phosphorus atoms) from the PtP_{2} plane, plane $\dot{\mathrm{B}}$. Pertinent out-of-plane displacements for the groups PE(1), PH(5), PH(2), PH(4), and PH(3) are +1.53, $+1.42,-1.42,-1.44$ and $-0.13 \AA$, respectively; $C(8)$ is $+0.19 \AA$ out of plane B.

The stereochemistry of the σ-bonded vinyl gzoup was unexpected in that the observed cis stereochemistry is the exact opposite of that predicted by Clark and Hine [1]. The distinct lack of planarity of this ifgand is also unusual. Simple valence-bond arguments would require that the entire ifgand be planar in order to maximize the delcalization of the six I-electrons and thereby minimize the electronic energy. The large out-of-plane distortion of this moiety is clearly revealed in Figure 1 and may be described as a torsion of 75.72° about the $C(1)-C(2)$ bond. This conformation effectively minimizes the electrcnic interaction between one carbonethoxy group and the other portion of the $\pi-s y s t e m$. A remarkably similar lack of planarity for a trans-1,2-dicarbomethoxyethenyl Ifgand
[17] has been observed as a consequence of an intramolecular hydrogen bond involving the ketonic oxygen atom of one ester group. Presumably, this lack of planarity of the vinyl ligand in I produces spectroscopic features which lead to the erroneous assignment of its stereochemistry.

A comparison of the geometry of the four-atom ring in I to the geometries of the metallocyclobutene rings in IrHP (Ph) $\mathbf{2}^{-}$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{P}(\mathrm{Ph})_{3}(\mathrm{II}) \quad[5], \operatorname{Ir}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{P}(\mathrm{Ph})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{P}\left(\mathrm{Ph}_{2}\right)_{3} \cdot I .5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}-$ (IIIG) [6], $\operatorname{Ir}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{Ph}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{P}(\mathrm{Ph})_{3} \cdot \operatorname{THF}(T I I b) \quad[6], \mathrm{PtC}(P h)=C(P h) \mathrm{C}=\right.$ $O\left[P(P h)_{3}\right]_{2}(I V) \quad[18]$, and $\mathrm{Fe}_{3}(\mathrm{CO})_{8}(P h)_{2} \mathrm{PC}_{4}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{P}(\mathrm{Ph})_{2}(\mathrm{~V})$ [I9] I.s presented in Taile 5. As a result of the differences in covalent radii the $M-X$ and $C-X$ distances are consistently longer and the angle B, centering on atom X, is smaller when atom X is phosphorus The geometry of I is strikingly similar to that of the bis (orthometalated) iridium complex (II).

Detailed tabulations of the representative geometries of products from insertion of platinum into cyclopropane rings have appeared [20]. Whereas the four-aton rings within the platinacycioburane complexes are puckered, che metallocyclobutene rings described in Table 5 are virtually flat. The $C(7)-C(8)$ aromatic bond length in I is $0.17 \AA$ shorter than the average carbon-carbon single-bond length of the platinaryflabutane complexes. The $X-P t-C$ and $X-C-C$ angles for I and those for the platinacyclobutane rings are similar however the remaining two angles within the four-atom rings are drastically different. The $P t-X-C$ angle within I is approximately 18° larger and the $\mathrm{Pr}-\mathrm{C}-\mathrm{C}$ angle is approximately 14° smaller than the related angles within the platinacyclobutane complexes.

The average $P t-p$ bond length, $2.330(2) \AA$, observed in I is $0.082 \AA$ longer than the average $P t-P$ bond length in $P t[P-$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right]_{2} \mathrm{Cl}_{2}[21]$ where each phosphine ligand is opposite a weakly trans-labelizing ligand. Based on the Cruickshank
Metallocyclobutene Complexea . .
Table 5, Comparison of Intramolecular Distancas and Bond Angles within
. . Matallocyclabutene Complexap

$I^{\text {b }}$		$\underline{L}{ }^{\text {c }}$		III ${ }^{\text {d }}(a, b)$	$I V^{e}$	v^{f}
Intramolecular distances (i)						
$\mathrm{M}-\mathrm{C}_{1}$	2.056 (8)	2.063 (11)	, 2.085(10)	$2.07(1), 2.11(1)$	$2.09(4)$	1.86 (1)
$C_{1}-C_{2}$	$1.389(11)$	1.40(2), 1	1.39(2)		$1.31(8)$	1.74(1)
C_{2} mX	$1.794(9)$	1.807(16)	, 1.816(10)		1.45 (7)	1.53(2)
M-X	2.329(2)	2.396(4),	2.362 (3)		$2.08(6)$	2.02(1)
Bond Angles (0)						
\downarrow	$68.2(2)$	67.1(3), 6	67.8 (2)		62	
β	84.2(3)	83.8(3),	84.1 (2)		97	
Y	101.0(6)	100.3(7),	101.0(5)	101.2, 101.9	100	
δ	106.6(6)	108.6(6),	107.1(5)		101	

[^1]$\mathrm{E}_{\mathrm{M}=\mathrm{Fa}, \quad \mathrm{X}=\mathrm{C}}$,
0
0
0
0
0
0
0
0
$d_{M m I r}, X=P ;$
criteria [22]this difference, $\Delta \ell / \sigma \bar{l}=11.7$, is highly significant. The Pt-C(I) bond length in I is virtually identical to the Pt-C (styryi) bond length, 2.022 (8) A, in trans-bromo (trans-styryl) bis(triphenylphosphine)platinum(II) [23]. The lengthening of the $P t-C(7)$ bond results from the strain within the metallocyclic ring. Thus the $P t-P$ and $P t-C$ bond lengths in
 exerting a stronger trans-influence than the triphenylphosphine ligands, as predicted by Appleton, Clark and Mañer [24]. The shortest non bonded contact distance, $H(27) \cdots H(11)$, is 2.26(1) A. The shortest non-bonded contact distance involving two nonhydrogen atoms, $O(3) \cdot . C(41)$ is $3.41(1) \AA$. Thus no intermolecular contact distances significantly shorter than the sum of the respective van der Waals radii are observed.

Acknowledgment. The authors gratefully acknowledge the support of this work by The Robert A. Welch Foundation through Grant AE-544.

References

1. H. C. Clark and K. E. Hine, J. Organomet. Chem., IOS (1976) C32.
2. G. W. Parshall, Acc. Chem. Res., 3 (1970) 139.
3. A. J. Carty, Organomet. Chem. Rev., Sect. A, 7 (1972) 191.
4. J. Dehand and M. Pfeffer, Coord Chem- Rev., 18 (1976) 327.
5. G. Del Piero, G. Perego, A. Zazzetta, and M. Cesari,

6. G. Perego, G. Del Piero, M. Cesari, M. G. Clerici, and E. Perrotti, J. Organomet. Ghem., 54 (1973) G51.
7. For a description of the programs used, see J. D. Oliver and N. C. Rice, Inorg. Chem., 15 (1976) 2741.
8. A. Tulinsky, C. R. Worthington, and E. Pignataro; Acta Crystallozr:, 12 (1959) 623.
9. J. D. Oliver, G. Henslee, and P. E. Rush, Acta Ciystallogr. Sect. B, 32 (1976) 2274 .
10. W. H. Zachariasen, Acta Crystallogr., Sect. A, 24 (1968) 212.
11. D. T. Cromer and J. T. Waber, Acta Crystallogr., 18 (1965) 104.
12. D. T. Cromer and D. Liberman, J. Chem. Phys., 53 (1970) 1891.
13. R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42(1965) 3175.
14. R: Eisenberg and J. A. Ibers, Inorg. Chem., 4 (1965) 773.
15. P. L. Bellon, M. Manassero, F. Porta, and M. Sansoni,
J. Organomet. Chem., 80 (1974) 139.
16. G. B. Robertson and P. O. Whimp, Inorg. Chem., 12 (1973) 1740.
17. N. V. Raghavan and R. E. Davis, I. Cryst. Mol. Struct., 5. (1975) 163.
18. W. Wong, S. J. Singer, W. D. Pitts, S. F. Watkins, and K. H. Baddley, Chem. Commun., (1972) 672.
19. M. Mathew, G. J. Palenik, A. J. Carty, and H. N. Paik, Chem. Commun-, (1974) 25.
20. D. J. Yarrow, J. A. Ibers, M. Lenarda, and M. Graziani, J. Organomet. Chem., 70 (1974) 133; R. Schlodder, J. A. Ibers, M. Lenarda, and M. Graziani, J. Am- Chem. Soc., $96(1974) 6893$.
21. G. G. Messmer, E. L. Amma, and J. A. Ibers, Inorg. Chem., ~ (1967) 725.
22. D. H. J. Gruickshank, Acta C=ystailogr., 2 (1949) 65.
23. J. Rajaram, R. G. Pearson, and J. A. Ibers, J. Am. Chem. Soc., 96 (1974) 2103.
24. T. G. Appleton, R. C. Clark, and L. E. Manzer, Coord. Chem- Rev., 10 (1973) 335.

[^0]: * The table of structure factors has been deposited as NAPS Document No. 03157 (26.pages). Order from ASIS/NAPS, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A copy may be secured by citing the document number, remitting $\$ 6.50$ for photocopies or $\$ 3.00$ for microfiche. Advance payment is required. Make checks payable to Microfiche Publications.

[^1]: a Ring labeling scheme:

 ${ }^{c} \mathrm{M}=\mathrm{Ir}, \mathrm{XmP} ;$

